3.1.84 \(\int \frac {(d+e x^2)^2 (a+b \sec ^{-1}(c x))}{x^4} \, dx\) [84]

Optimal. Leaf size=158 \[ \frac {2 b c d \left (c^2 d+9 e\right ) \sqrt {-1+c^2 x^2}}{9 \sqrt {c^2 x^2}}+\frac {b c d^2 \sqrt {-1+c^2 x^2}}{9 x^2 \sqrt {c^2 x^2}}-\frac {d^2 \left (a+b \sec ^{-1}(c x)\right )}{3 x^3}-\frac {2 d e \left (a+b \sec ^{-1}(c x)\right )}{x}+e^2 x \left (a+b \sec ^{-1}(c x)\right )-\frac {b e^2 x \tanh ^{-1}\left (\frac {c x}{\sqrt {-1+c^2 x^2}}\right )}{\sqrt {c^2 x^2}} \]

[Out]

-1/3*d^2*(a+b*arcsec(c*x))/x^3-2*d*e*(a+b*arcsec(c*x))/x+e^2*x*(a+b*arcsec(c*x))-b*e^2*x*arctanh(c*x/(c^2*x^2-
1)^(1/2))/(c^2*x^2)^(1/2)+2/9*b*c*d*(c^2*d+9*e)*(c^2*x^2-1)^(1/2)/(c^2*x^2)^(1/2)+1/9*b*c*d^2*(c^2*x^2-1)^(1/2
)/x^2/(c^2*x^2)^(1/2)

________________________________________________________________________________________

Rubi [A]
time = 0.10, antiderivative size = 158, normalized size of antiderivative = 1.00, number of steps used = 6, number of rules used = 7, integrand size = 21, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.333, Rules used = {276, 5346, 12, 1279, 462, 223, 212} \begin {gather*} -\frac {d^2 \left (a+b \sec ^{-1}(c x)\right )}{3 x^3}-\frac {2 d e \left (a+b \sec ^{-1}(c x)\right )}{x}+e^2 x \left (a+b \sec ^{-1}(c x)\right )+\frac {b c d^2 \sqrt {c^2 x^2-1}}{9 x^2 \sqrt {c^2 x^2}}+\frac {2 b c d \sqrt {c^2 x^2-1} \left (c^2 d+9 e\right )}{9 \sqrt {c^2 x^2}}-\frac {b e^2 x \tanh ^{-1}\left (\frac {c x}{\sqrt {c^2 x^2-1}}\right )}{\sqrt {c^2 x^2}} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[((d + e*x^2)^2*(a + b*ArcSec[c*x]))/x^4,x]

[Out]

(2*b*c*d*(c^2*d + 9*e)*Sqrt[-1 + c^2*x^2])/(9*Sqrt[c^2*x^2]) + (b*c*d^2*Sqrt[-1 + c^2*x^2])/(9*x^2*Sqrt[c^2*x^
2]) - (d^2*(a + b*ArcSec[c*x]))/(3*x^3) - (2*d*e*(a + b*ArcSec[c*x]))/x + e^2*x*(a + b*ArcSec[c*x]) - (b*e^2*x
*ArcTanh[(c*x)/Sqrt[-1 + c^2*x^2]])/Sqrt[c^2*x^2]

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 212

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))*ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 223

Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Subst[Int[1/(1 - b*x^2), x], x, x/Sqrt[a + b*x^2]] /; FreeQ[{a,
b}, x] &&  !GtQ[a, 0]

Rule 276

Int[((c_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_.), x_Symbol] :> Int[ExpandIntegrand[(c*x)^m*(a + b*x^n)^p,
 x], x] /; FreeQ[{a, b, c, m, n}, x] && IGtQ[p, 0]

Rule 462

Int[((e_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_.)*((c_) + (d_.)*(x_)^(n_)), x_Symbol] :> Simp[c*(e*x)^(m +
 1)*((a + b*x^n)^(p + 1)/(a*e*(m + 1))), x] + Dist[d/e^n, Int[(e*x)^(m + n)*(a + b*x^n)^p, x], x] /; FreeQ[{a,
 b, c, d, e, m, n, p}, x] && NeQ[b*c - a*d, 0] && EqQ[m + n*(p + 1) + 1, 0] && (IntegerQ[n] || GtQ[e, 0]) && (
(GtQ[n, 0] && LtQ[m, -1]) || (LtQ[n, 0] && GtQ[m + n, -1]))

Rule 1279

Int[((f_.)*(x_))^(m_)*((d_) + (e_.)*(x_)^2)^(q_.)*((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_.), x_Symbol] :> Wit
h[{Qx = PolynomialQuotient[(a + b*x^2 + c*x^4)^p, f*x, x], R = PolynomialRemainder[(a + b*x^2 + c*x^4)^p, f*x,
 x]}, Simp[R*(f*x)^(m + 1)*((d + e*x^2)^(q + 1)/(d*f*(m + 1))), x] + Dist[1/(d*f^2*(m + 1)), Int[(f*x)^(m + 2)
*(d + e*x^2)^q*ExpandToSum[d*f*(m + 1)*(Qx/x) - e*R*(m + 2*q + 3), x], x], x]] /; FreeQ[{a, b, c, d, e, f, q},
 x] && NeQ[b^2 - 4*a*c, 0] && IGtQ[p, 0] && LtQ[m, -1]

Rule 5346

Int[((a_.) + ArcSec[(c_.)*(x_)]*(b_.))*((f_.)*(x_))^(m_.)*((d_.) + (e_.)*(x_)^2)^(p_.), x_Symbol] :> With[{u =
 IntHide[(f*x)^m*(d + e*x^2)^p, x]}, Dist[a + b*ArcSec[c*x], u, x] - Dist[b*c*(x/Sqrt[c^2*x^2]), Int[SimplifyI
ntegrand[u/(x*Sqrt[c^2*x^2 - 1]), x], x], x]] /; FreeQ[{a, b, c, d, e, f, m, p}, x] && ((IGtQ[p, 0] &&  !(ILtQ
[(m - 1)/2, 0] && GtQ[m + 2*p + 3, 0])) || (IGtQ[(m + 1)/2, 0] &&  !(ILtQ[p, 0] && GtQ[m + 2*p + 3, 0])) || (I
LtQ[(m + 2*p + 1)/2, 0] &&  !ILtQ[(m - 1)/2, 0]))

Rubi steps

\begin {align*} \int \frac {\left (d+e x^2\right )^2 \left (a+b \sec ^{-1}(c x)\right )}{x^4} \, dx &=-\frac {d^2 \left (a+b \sec ^{-1}(c x)\right )}{3 x^3}-\frac {2 d e \left (a+b \sec ^{-1}(c x)\right )}{x}+e^2 x \left (a+b \sec ^{-1}(c x)\right )-\frac {(b c x) \int \frac {-d^2-6 d e x^2+3 e^2 x^4}{3 x^4 \sqrt {-1+c^2 x^2}} \, dx}{\sqrt {c^2 x^2}}\\ &=-\frac {d^2 \left (a+b \sec ^{-1}(c x)\right )}{3 x^3}-\frac {2 d e \left (a+b \sec ^{-1}(c x)\right )}{x}+e^2 x \left (a+b \sec ^{-1}(c x)\right )-\frac {(b c x) \int \frac {-d^2-6 d e x^2+3 e^2 x^4}{x^4 \sqrt {-1+c^2 x^2}} \, dx}{3 \sqrt {c^2 x^2}}\\ &=\frac {b c d^2 \sqrt {-1+c^2 x^2}}{9 x^2 \sqrt {c^2 x^2}}-\frac {d^2 \left (a+b \sec ^{-1}(c x)\right )}{3 x^3}-\frac {2 d e \left (a+b \sec ^{-1}(c x)\right )}{x}+e^2 x \left (a+b \sec ^{-1}(c x)\right )-\frac {(b c x) \int \frac {-2 d \left (c^2 d+9 e\right )+9 e^2 x^2}{x^2 \sqrt {-1+c^2 x^2}} \, dx}{9 \sqrt {c^2 x^2}}\\ &=\frac {2 b c d \left (c^2 d+9 e\right ) \sqrt {-1+c^2 x^2}}{9 \sqrt {c^2 x^2}}+\frac {b c d^2 \sqrt {-1+c^2 x^2}}{9 x^2 \sqrt {c^2 x^2}}-\frac {d^2 \left (a+b \sec ^{-1}(c x)\right )}{3 x^3}-\frac {2 d e \left (a+b \sec ^{-1}(c x)\right )}{x}+e^2 x \left (a+b \sec ^{-1}(c x)\right )-\frac {\left (b c e^2 x\right ) \int \frac {1}{\sqrt {-1+c^2 x^2}} \, dx}{\sqrt {c^2 x^2}}\\ &=\frac {2 b c d \left (c^2 d+9 e\right ) \sqrt {-1+c^2 x^2}}{9 \sqrt {c^2 x^2}}+\frac {b c d^2 \sqrt {-1+c^2 x^2}}{9 x^2 \sqrt {c^2 x^2}}-\frac {d^2 \left (a+b \sec ^{-1}(c x)\right )}{3 x^3}-\frac {2 d e \left (a+b \sec ^{-1}(c x)\right )}{x}+e^2 x \left (a+b \sec ^{-1}(c x)\right )-\frac {\left (b c e^2 x\right ) \text {Subst}\left (\int \frac {1}{1-c^2 x^2} \, dx,x,\frac {x}{\sqrt {-1+c^2 x^2}}\right )}{\sqrt {c^2 x^2}}\\ &=\frac {2 b c d \left (c^2 d+9 e\right ) \sqrt {-1+c^2 x^2}}{9 \sqrt {c^2 x^2}}+\frac {b c d^2 \sqrt {-1+c^2 x^2}}{9 x^2 \sqrt {c^2 x^2}}-\frac {d^2 \left (a+b \sec ^{-1}(c x)\right )}{3 x^3}-\frac {2 d e \left (a+b \sec ^{-1}(c x)\right )}{x}+e^2 x \left (a+b \sec ^{-1}(c x)\right )-\frac {b e^2 x \tanh ^{-1}\left (\frac {c x}{\sqrt {-1+c^2 x^2}}\right )}{\sqrt {c^2 x^2}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 0.14, size = 127, normalized size = 0.80 \begin {gather*} \frac {c \left (b c d \sqrt {1-\frac {1}{c^2 x^2}} x \left (d+2 c^2 d x^2+18 e x^2\right )-3 a \left (d^2+6 d e x^2-3 e^2 x^4\right )\right )-3 b c \left (d^2+6 d e x^2-3 e^2 x^4\right ) \sec ^{-1}(c x)-9 b e^2 x^3 \log \left (\left (1+\sqrt {1-\frac {1}{c^2 x^2}}\right ) x\right )}{9 c x^3} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[((d + e*x^2)^2*(a + b*ArcSec[c*x]))/x^4,x]

[Out]

(c*(b*c*d*Sqrt[1 - 1/(c^2*x^2)]*x*(d + 2*c^2*d*x^2 + 18*e*x^2) - 3*a*(d^2 + 6*d*e*x^2 - 3*e^2*x^4)) - 3*b*c*(d
^2 + 6*d*e*x^2 - 3*e^2*x^4)*ArcSec[c*x] - 9*b*e^2*x^3*Log[(1 + Sqrt[1 - 1/(c^2*x^2)])*x])/(9*c*x^3)

________________________________________________________________________________________

Maple [A]
time = 0.15, size = 252, normalized size = 1.59

method result size
derivativedivides \(c^{3} \left (\frac {a \left (e^{2} c x -\frac {c \,d^{2}}{3 x^{3}}-\frac {2 c d e}{x}\right )}{c^{4}}+\frac {b \,\mathrm {arcsec}\left (c x \right ) e^{2} x}{c^{3}}-\frac {b \,\mathrm {arcsec}\left (c x \right ) d^{2}}{3 c^{3} x^{3}}-\frac {2 b \,\mathrm {arcsec}\left (c x \right ) d e}{c^{3} x}+\frac {2 b \left (c^{2} x^{2}-1\right ) d^{2}}{9 c^{2} x^{2} \sqrt {\frac {c^{2} x^{2}-1}{c^{2} x^{2}}}}+\frac {b \left (c^{2} x^{2}-1\right ) d^{2}}{9 \sqrt {\frac {c^{2} x^{2}-1}{c^{2} x^{2}}}\, c^{4} x^{4}}+\frac {2 b \left (c^{2} x^{2}-1\right ) d e}{c^{4} \sqrt {\frac {c^{2} x^{2}-1}{c^{2} x^{2}}}\, x^{2}}-\frac {b \sqrt {c^{2} x^{2}-1}\, e^{2} \ln \left (c x +\sqrt {c^{2} x^{2}-1}\right )}{c^{5} \sqrt {\frac {c^{2} x^{2}-1}{c^{2} x^{2}}}\, x}\right )\) \(252\)
default \(c^{3} \left (\frac {a \left (e^{2} c x -\frac {c \,d^{2}}{3 x^{3}}-\frac {2 c d e}{x}\right )}{c^{4}}+\frac {b \,\mathrm {arcsec}\left (c x \right ) e^{2} x}{c^{3}}-\frac {b \,\mathrm {arcsec}\left (c x \right ) d^{2}}{3 c^{3} x^{3}}-\frac {2 b \,\mathrm {arcsec}\left (c x \right ) d e}{c^{3} x}+\frac {2 b \left (c^{2} x^{2}-1\right ) d^{2}}{9 c^{2} x^{2} \sqrt {\frac {c^{2} x^{2}-1}{c^{2} x^{2}}}}+\frac {b \left (c^{2} x^{2}-1\right ) d^{2}}{9 \sqrt {\frac {c^{2} x^{2}-1}{c^{2} x^{2}}}\, c^{4} x^{4}}+\frac {2 b \left (c^{2} x^{2}-1\right ) d e}{c^{4} \sqrt {\frac {c^{2} x^{2}-1}{c^{2} x^{2}}}\, x^{2}}-\frac {b \sqrt {c^{2} x^{2}-1}\, e^{2} \ln \left (c x +\sqrt {c^{2} x^{2}-1}\right )}{c^{5} \sqrt {\frac {c^{2} x^{2}-1}{c^{2} x^{2}}}\, x}\right )\) \(252\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((e*x^2+d)^2*(a+b*arcsec(c*x))/x^4,x,method=_RETURNVERBOSE)

[Out]

c^3*(a/c^4*(e^2*c*x-1/3*c*d^2/x^3-2*c*d*e/x)+b/c^3*arcsec(c*x)*e^2*x-1/3*b*arcsec(c*x)*d^2/c^3/x^3-2*b/c^3*arc
sec(c*x)*d*e/x+2/9*b*(c^2*x^2-1)/c^2/x^2/((c^2*x^2-1)/c^2/x^2)^(1/2)*d^2+1/9*b*(c^2*x^2-1)/((c^2*x^2-1)/c^2/x^
2)^(1/2)/c^4/x^4*d^2+2*b/c^4*(c^2*x^2-1)/((c^2*x^2-1)/c^2/x^2)^(1/2)/x^2*d*e-b/c^5*(c^2*x^2-1)^(1/2)/((c^2*x^2
-1)/c^2/x^2)^(1/2)/x*e^2*ln(c*x+(c^2*x^2-1)^(1/2)))

________________________________________________________________________________________

Maxima [A]
time = 0.26, size = 159, normalized size = 1.01 \begin {gather*} -\frac {1}{9} \, b d^{2} {\left (\frac {c^{4} {\left (-\frac {1}{c^{2} x^{2}} + 1\right )}^{\frac {3}{2}} - 3 \, c^{4} \sqrt {-\frac {1}{c^{2} x^{2}} + 1}}{c} + \frac {3 \, \operatorname {arcsec}\left (c x\right )}{x^{3}}\right )} + 2 \, {\left (c \sqrt {-\frac {1}{c^{2} x^{2}} + 1} - \frac {\operatorname {arcsec}\left (c x\right )}{x}\right )} b d e + a x e^{2} + \frac {{\left (2 \, c x \operatorname {arcsec}\left (c x\right ) - \log \left (\sqrt {-\frac {1}{c^{2} x^{2}} + 1} + 1\right ) + \log \left (-\sqrt {-\frac {1}{c^{2} x^{2}} + 1} + 1\right )\right )} b e^{2}}{2 \, c} - \frac {2 \, a d e}{x} - \frac {a d^{2}}{3 \, x^{3}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x^2+d)^2*(a+b*arcsec(c*x))/x^4,x, algorithm="maxima")

[Out]

-1/9*b*d^2*((c^4*(-1/(c^2*x^2) + 1)^(3/2) - 3*c^4*sqrt(-1/(c^2*x^2) + 1))/c + 3*arcsec(c*x)/x^3) + 2*(c*sqrt(-
1/(c^2*x^2) + 1) - arcsec(c*x)/x)*b*d*e + a*x*e^2 + 1/2*(2*c*x*arcsec(c*x) - log(sqrt(-1/(c^2*x^2) + 1) + 1) +
 log(-sqrt(-1/(c^2*x^2) + 1) + 1))*b*e^2/c - 2*a*d*e/x - 1/3*a*d^2/x^3

________________________________________________________________________________________

Fricas [A]
time = 3.72, size = 234, normalized size = 1.48 \begin {gather*} \frac {2 \, b c^{4} d^{2} x^{3} + 9 \, a c x^{4} e^{2} + 9 \, b x^{3} e^{2} \log \left (-c x + \sqrt {c^{2} x^{2} - 1}\right ) - 3 \, a c d^{2} + 3 \, {\left (b c d^{2} x^{3} - b c d^{2} + 3 \, {\left (b c x^{4} - b c x^{3}\right )} e^{2} + 6 \, {\left (b c d x^{3} - b c d x^{2}\right )} e\right )} \operatorname {arcsec}\left (c x\right ) - 6 \, {\left (b c d^{2} x^{3} + 6 \, b c d x^{3} e - 3 \, b c x^{3} e^{2}\right )} \arctan \left (-c x + \sqrt {c^{2} x^{2} - 1}\right ) + 18 \, {\left (b c^{2} d x^{3} - a c d x^{2}\right )} e + {\left (2 \, b c^{3} d^{2} x^{2} + 18 \, b c d x^{2} e + b c d^{2}\right )} \sqrt {c^{2} x^{2} - 1}}{9 \, c x^{3}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x^2+d)^2*(a+b*arcsec(c*x))/x^4,x, algorithm="fricas")

[Out]

1/9*(2*b*c^4*d^2*x^3 + 9*a*c*x^4*e^2 + 9*b*x^3*e^2*log(-c*x + sqrt(c^2*x^2 - 1)) - 3*a*c*d^2 + 3*(b*c*d^2*x^3
- b*c*d^2 + 3*(b*c*x^4 - b*c*x^3)*e^2 + 6*(b*c*d*x^3 - b*c*d*x^2)*e)*arcsec(c*x) - 6*(b*c*d^2*x^3 + 6*b*c*d*x^
3*e - 3*b*c*x^3*e^2)*arctan(-c*x + sqrt(c^2*x^2 - 1)) + 18*(b*c^2*d*x^3 - a*c*d*x^2)*e + (2*b*c^3*d^2*x^2 + 18
*b*c*d*x^2*e + b*c*d^2)*sqrt(c^2*x^2 - 1))/(c*x^3)

________________________________________________________________________________________

Sympy [A]
time = 5.38, size = 211, normalized size = 1.34 \begin {gather*} - \frac {a d^{2}}{3 x^{3}} - \frac {2 a d e}{x} + a e^{2} x + 2 b c d e \sqrt {1 - \frac {1}{c^{2} x^{2}}} - \frac {b d^{2} \operatorname {asec}{\left (c x \right )}}{3 x^{3}} - \frac {2 b d e \operatorname {asec}{\left (c x \right )}}{x} + b e^{2} x \operatorname {asec}{\left (c x \right )} + \frac {b d^{2} \left (\begin {cases} \frac {2 c^{3} \sqrt {c^{2} x^{2} - 1}}{3 x} + \frac {c \sqrt {c^{2} x^{2} - 1}}{3 x^{3}} & \text {for}\: \left |{c^{2} x^{2}}\right | > 1 \\\frac {2 i c^{3} \sqrt {- c^{2} x^{2} + 1}}{3 x} + \frac {i c \sqrt {- c^{2} x^{2} + 1}}{3 x^{3}} & \text {otherwise} \end {cases}\right )}{3 c} - \frac {b e^{2} \left (\begin {cases} \operatorname {acosh}{\left (c x \right )} & \text {for}\: \left |{c^{2} x^{2}}\right | > 1 \\- i \operatorname {asin}{\left (c x \right )} & \text {otherwise} \end {cases}\right )}{c} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x**2+d)**2*(a+b*asec(c*x))/x**4,x)

[Out]

-a*d**2/(3*x**3) - 2*a*d*e/x + a*e**2*x + 2*b*c*d*e*sqrt(1 - 1/(c**2*x**2)) - b*d**2*asec(c*x)/(3*x**3) - 2*b*
d*e*asec(c*x)/x + b*e**2*x*asec(c*x) + b*d**2*Piecewise((2*c**3*sqrt(c**2*x**2 - 1)/(3*x) + c*sqrt(c**2*x**2 -
 1)/(3*x**3), Abs(c**2*x**2) > 1), (2*I*c**3*sqrt(-c**2*x**2 + 1)/(3*x) + I*c*sqrt(-c**2*x**2 + 1)/(3*x**3), T
rue))/(3*c) - b*e**2*Piecewise((acosh(c*x), Abs(c**2*x**2) > 1), (-I*asin(c*x), True))/c

________________________________________________________________________________________

Giac [B] Leaf count of result is larger than twice the leaf count of optimal. 4968 vs. \(2 (140) = 280\).
time = 97.64, size = 4968, normalized size = 31.44 \begin {gather*} \text {Too large to display} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x^2+d)^2*(a+b*arcsec(c*x))/x^4,x, algorithm="giac")

[Out]

-1/9*(3*b*c^4*d^2*arccos(1/(c*x))/(c^2 - 2*c^2*(1/(c^2*x^2) - 1)/(1/(c*x) + 1)^2 + 2*c^2*(1/(c^2*x^2) - 1)^3/(
1/(c*x) + 1)^6 - c^2*(1/(c^2*x^2) - 1)^4/(1/(c*x) + 1)^8) + 3*a*c^4*d^2/(c^2 - 2*c^2*(1/(c^2*x^2) - 1)/(1/(c*x
) + 1)^2 + 2*c^2*(1/(c^2*x^2) - 1)^3/(1/(c*x) + 1)^6 - c^2*(1/(c^2*x^2) - 1)^4/(1/(c*x) + 1)^8) + 12*b*c^4*d^2
*(1/(c^2*x^2) - 1)*arccos(1/(c*x))/((c^2 - 2*c^2*(1/(c^2*x^2) - 1)/(1/(c*x) + 1)^2 + 2*c^2*(1/(c^2*x^2) - 1)^3
/(1/(c*x) + 1)^6 - c^2*(1/(c^2*x^2) - 1)^4/(1/(c*x) + 1)^8)*(1/(c*x) + 1)^2) - 6*b*c^4*d^2*sqrt(-1/(c^2*x^2) +
 1)/((c^2 - 2*c^2*(1/(c^2*x^2) - 1)/(1/(c*x) + 1)^2 + 2*c^2*(1/(c^2*x^2) - 1)^3/(1/(c*x) + 1)^6 - c^2*(1/(c^2*
x^2) - 1)^4/(1/(c*x) + 1)^8)*(1/(c*x) + 1)) + 12*a*c^4*d^2*(1/(c^2*x^2) - 1)/((c^2 - 2*c^2*(1/(c^2*x^2) - 1)/(
1/(c*x) + 1)^2 + 2*c^2*(1/(c^2*x^2) - 1)^3/(1/(c*x) + 1)^6 - c^2*(1/(c^2*x^2) - 1)^4/(1/(c*x) + 1)^8)*(1/(c*x)
 + 1)^2) + 18*b*c^2*d*e*arccos(1/(c*x))/(c^2 - 2*c^2*(1/(c^2*x^2) - 1)/(1/(c*x) + 1)^2 + 2*c^2*(1/(c^2*x^2) -
1)^3/(1/(c*x) + 1)^6 - c^2*(1/(c^2*x^2) - 1)^4/(1/(c*x) + 1)^8) + 18*b*c^4*d^2*(1/(c^2*x^2) - 1)^2*arccos(1/(c
*x))/((c^2 - 2*c^2*(1/(c^2*x^2) - 1)/(1/(c*x) + 1)^2 + 2*c^2*(1/(c^2*x^2) - 1)^3/(1/(c*x) + 1)^6 - c^2*(1/(c^2
*x^2) - 1)^4/(1/(c*x) + 1)^8)*(1/(c*x) + 1)^4) + 2*b*c^4*d^2*(-1/(c^2*x^2) + 1)^(3/2)/((c^2 - 2*c^2*(1/(c^2*x^
2) - 1)/(1/(c*x) + 1)^2 + 2*c^2*(1/(c^2*x^2) - 1)^3/(1/(c*x) + 1)^6 - c^2*(1/(c^2*x^2) - 1)^4/(1/(c*x) + 1)^8)
*(1/(c*x) + 1)^3) + 18*a*c^2*d*e/(c^2 - 2*c^2*(1/(c^2*x^2) - 1)/(1/(c*x) + 1)^2 + 2*c^2*(1/(c^2*x^2) - 1)^3/(1
/(c*x) + 1)^6 - c^2*(1/(c^2*x^2) - 1)^4/(1/(c*x) + 1)^8) + 18*a*c^4*d^2*(1/(c^2*x^2) - 1)^2/((c^2 - 2*c^2*(1/(
c^2*x^2) - 1)/(1/(c*x) + 1)^2 + 2*c^2*(1/(c^2*x^2) - 1)^3/(1/(c*x) + 1)^6 - c^2*(1/(c^2*x^2) - 1)^4/(1/(c*x) +
 1)^8)*(1/(c*x) + 1)^4) + 12*b*c^4*d^2*(1/(c^2*x^2) - 1)^3*arccos(1/(c*x))/((c^2 - 2*c^2*(1/(c^2*x^2) - 1)/(1/
(c*x) + 1)^2 + 2*c^2*(1/(c^2*x^2) - 1)^3/(1/(c*x) + 1)^6 - c^2*(1/(c^2*x^2) - 1)^4/(1/(c*x) + 1)^8)*(1/(c*x) +
 1)^6) - 36*b*c^2*d*e*sqrt(-1/(c^2*x^2) + 1)/((c^2 - 2*c^2*(1/(c^2*x^2) - 1)/(1/(c*x) + 1)^2 + 2*c^2*(1/(c^2*x
^2) - 1)^3/(1/(c*x) + 1)^6 - c^2*(1/(c^2*x^2) - 1)^4/(1/(c*x) + 1)^8)*(1/(c*x) + 1)) - 2*b*c^4*d^2*(1/(c^2*x^2
) - 1)^2*sqrt(-1/(c^2*x^2) + 1)/((c^2 - 2*c^2*(1/(c^2*x^2) - 1)/(1/(c*x) + 1)^2 + 2*c^2*(1/(c^2*x^2) - 1)^3/(1
/(c*x) + 1)^6 - c^2*(1/(c^2*x^2) - 1)^4/(1/(c*x) + 1)^8)*(1/(c*x) + 1)^5) + 12*a*c^4*d^2*(1/(c^2*x^2) - 1)^3/(
(c^2 - 2*c^2*(1/(c^2*x^2) - 1)/(1/(c*x) + 1)^2 + 2*c^2*(1/(c^2*x^2) - 1)^3/(1/(c*x) + 1)^6 - c^2*(1/(c^2*x^2)
- 1)^4/(1/(c*x) + 1)^8)*(1/(c*x) + 1)^6) - 9*b*e^2*arccos(1/(c*x))/(c^2 - 2*c^2*(1/(c^2*x^2) - 1)/(1/(c*x) + 1
)^2 + 2*c^2*(1/(c^2*x^2) - 1)^3/(1/(c*x) + 1)^6 - c^2*(1/(c^2*x^2) - 1)^4/(1/(c*x) + 1)^8) - 36*b*c^2*d*e*(1/(
c^2*x^2) - 1)^2*arccos(1/(c*x))/((c^2 - 2*c^2*(1/(c^2*x^2) - 1)/(1/(c*x) + 1)^2 + 2*c^2*(1/(c^2*x^2) - 1)^3/(1
/(c*x) + 1)^6 - c^2*(1/(c^2*x^2) - 1)^4/(1/(c*x) + 1)^8)*(1/(c*x) + 1)^4) + 3*b*c^4*d^2*(1/(c^2*x^2) - 1)^4*ar
ccos(1/(c*x))/((c^2 - 2*c^2*(1/(c^2*x^2) - 1)/(1/(c*x) + 1)^2 + 2*c^2*(1/(c^2*x^2) - 1)^3/(1/(c*x) + 1)^6 - c^
2*(1/(c^2*x^2) - 1)^4/(1/(c*x) + 1)^8)*(1/(c*x) + 1)^8) + 9*b*e^2*log(abs(sqrt(-1/(c^2*x^2) + 1) + 1/(c*x) + 1
))/(c^2 - 2*c^2*(1/(c^2*x^2) - 1)/(1/(c*x) + 1)^2 + 2*c^2*(1/(c^2*x^2) - 1)^3/(1/(c*x) + 1)^6 - c^2*(1/(c^2*x^
2) - 1)^4/(1/(c*x) + 1)^8) - 9*b*e^2*log(abs(sqrt(-1/(c^2*x^2) + 1) - 1/(c*x) - 1))/(c^2 - 2*c^2*(1/(c^2*x^2)
- 1)/(1/(c*x) + 1)^2 + 2*c^2*(1/(c^2*x^2) - 1)^3/(1/(c*x) + 1)^6 - c^2*(1/(c^2*x^2) - 1)^4/(1/(c*x) + 1)^8) -
6*b*c^4*d^2*(1/(c^2*x^2) - 1)^3*sqrt(-1/(c^2*x^2) + 1)/((c^2 - 2*c^2*(1/(c^2*x^2) - 1)/(1/(c*x) + 1)^2 + 2*c^2
*(1/(c^2*x^2) - 1)^3/(1/(c*x) + 1)^6 - c^2*(1/(c^2*x^2) - 1)^4/(1/(c*x) + 1)^8)*(1/(c*x) + 1)^7) - 36*b*c^2*d*
e*(-1/(c^2*x^2) + 1)^(3/2)/((c^2 - 2*c^2*(1/(c^2*x^2) - 1)/(1/(c*x) + 1)^2 + 2*c^2*(1/(c^2*x^2) - 1)^3/(1/(c*x
) + 1)^6 - c^2*(1/(c^2*x^2) - 1)^4/(1/(c*x) + 1)^8)*(1/(c*x) + 1)^3) - 9*a*e^2/(c^2 - 2*c^2*(1/(c^2*x^2) - 1)/
(1/(c*x) + 1)^2 + 2*c^2*(1/(c^2*x^2) - 1)^3/(1/(c*x) + 1)^6 - c^2*(1/(c^2*x^2) - 1)^4/(1/(c*x) + 1)^8) - 36*a*
c^2*d*e*(1/(c^2*x^2) - 1)^2/((c^2 - 2*c^2*(1/(c^2*x^2) - 1)/(1/(c*x) + 1)^2 + 2*c^2*(1/(c^2*x^2) - 1)^3/(1/(c*
x) + 1)^6 - c^2*(1/(c^2*x^2) - 1)^4/(1/(c*x) + 1)^8)*(1/(c*x) + 1)^4) + 3*a*c^4*d^2*(1/(c^2*x^2) - 1)^4/((c^2
- 2*c^2*(1/(c^2*x^2) - 1)/(1/(c*x) + 1)^2 + 2*c^2*(1/(c^2*x^2) - 1)^3/(1/(c*x) + 1)^6 - c^2*(1/(c^2*x^2) - 1)^
4/(1/(c*x) + 1)^8)*(1/(c*x) + 1)^8) + 36*b*e^2*(1/(c^2*x^2) - 1)*arccos(1/(c*x))/((c^2 - 2*c^2*(1/(c^2*x^2) -
1)/(1/(c*x) + 1)^2 + 2*c^2*(1/(c^2*x^2) - 1)^3/(1/(c*x) + 1)^6 - c^2*(1/(c^2*x^2) - 1)^4/(1/(c*x) + 1)^8)*(1/(
c*x) + 1)^2) - 18*b*e^2*(1/(c^2*x^2) - 1)*log(abs(sqrt(-1/(c^2*x^2) + 1) + 1/(c*x) + 1))/((c^2 - 2*c^2*(1/(c^2
*x^2) - 1)/(1/(c*x) + 1)^2 + 2*c^2*(1/(c^2*x^2) - 1)^3/(1/(c*x) + 1)^6 - c^2*(1/(c^2*x^2) - 1)^4/(1/(c*x) + 1)
^8)*(1/(c*x) + 1)^2) + 18*b*e^2*(1/(c^2*x^2) - 1)*log(abs(sqrt(-1/(c^2*x^2) + 1) - 1/(c*x) - 1))/((c^2 - 2*c^2
*(1/(c^2*x^2) - 1)/(1/(c*x) + 1)^2 + 2*c^2*(1/(...

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.01 \begin {gather*} \int \frac {{\left (e\,x^2+d\right )}^2\,\left (a+b\,\mathrm {acos}\left (\frac {1}{c\,x}\right )\right )}{x^4} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(((d + e*x^2)^2*(a + b*acos(1/(c*x))))/x^4,x)

[Out]

int(((d + e*x^2)^2*(a + b*acos(1/(c*x))))/x^4, x)

________________________________________________________________________________________